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The tactical effectiveness Of military eloctro-optical devices such as the
forward looking Infrared or high energy laser (BEL) system requires a knowledge

ofteextinction (absorption and scattering) by the Intervening atmosphere. In
the case of Intentionally produced obscurant. such as smokes, a quantitative
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20. ABSTRACT (cont)

only need to know the spacial distribution of the mass content of the smoke
particles rather than the details of their particle size distributions and
number concentrations. In this report) a linear relation, independent o
particle size distribution, between aerosol volume extinction coefficient and
mass content is derived and applied to several military smokes: solutions of
orthophosphoric acid in water, zinc chloride in water (HC smoke), diesel fuel,
fog oil, and sulfuric acid smoke. Comparison of the theoretical extinction-mass
relation with infrared (IR) transmission measurements of Milham (1976), Milham
et al (1977), and Carlon et al (1977) shows good agreement (generally within 30
percent) between theory and measurement for the highly absorbing phosphoric acid
and sulfuric acid smokes, but only fair-to-poor agreement (up to factors of 2.5
to 10 differences) for weakly absorbing HC and fog oil smokes.: Relationships
between smoke aergsol volume absorp.tion coefficient and aerosol mass and between
aerosol volume backscatter coefficient and mass are also derived. The
relationships are valid only at particular wavelengths that depend on the
aerosol refractive index and on the range of particle sizes present in a
particular polydispersion. Several applications are suggested: (1) prediction
of IR (and in some cases visible) extinction coefficient from knowledge of smoke
cloud mass content; or, conversely (2) inference of path-integrated smoke mass
content from an IR laser transmission measurement through the smoke cloud; (3)
determination of smoke mass content at a particular point in a smoke cloud from
a smoke aerosol absorption measurement with an IR laser spectrophone; (4)
determination of smoke backscatter coefficient from knowledge of smoke mass
content; (5) inference of extinction at one IR wavelength from knowledge of that
at another IR wavelength; and (6) prediction of phosphoric acid and HC smoke
extinction coefficient as a function of atmospheric relative humidity from
knowledge of smoke mass expenditure.
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INTRODUCTION

During the last decade, a number of scientists l- 4 have investigated

possible relationships between extinction (or atmospheric visibility)
and mass content of atmospheric aerosols. In general, these investiga-
tions indicate that there is no unique relation between extinction and
aerosol mass although an approximate proportionality may exist for
specific locations or aerosol type.

However, smoke particles are distinctly different from natural aerosol
particles in three respects: they are generally smaller, more nearly
homogeneous, and generally spherical in shape. These three properties

enable us to derive a unique relation, independent of the particle size
distribution, between the IR (and in some cases visible) extinction
coefficient and mass concentration for phosphoric acid, HC, petroleum

oil, and sulfuric acid smokes. These extinction-mass relationships are
extended to relations between aerosol absorption coefficient and mass

content, and between aerosol backscatter coefficient and mass content.

Our results have considerable practical application. They suggest that
knowledge of smoke mass content implies knowledge of IR (and in some

cases visible) extinction coefficient. Alternatively, smoke mass con-
tent could be inferred from IR transmission measurements, IR spectro-

phone absorption measurements, or visible-wavelength lidar backscatter

measurements.

EXTINCTION, ABSORPTION, BACKSCATTER, AND MASS CONTENT OF SMOKES

Consider a polydispersion of spherical smoke particles characterized by
a size distribution n(r). We want to derive relationships between the
aerosol extinction and absorption coefficients ae and a, the backscat-
ter coefficient %s, and the aerosol mass content M given by

'R. J. Charlson, N. C. Ahlquist, and H. Horvath, 1968, On the Generality
of Correlation of Atmospheric Mass Concentration and Light Scatter,
Atmos Environ, 2:455-464

K. E. Noll, P. L Mueller, and M. Imada, 1968, Visibility and Aerosol
Concentration in Urban Air, Atmos Environ, 2:465-475

3M. J. Pilat and D. S. Ensor, 1970, Plume Opacity and Particulate mass
Concentration, Atmos Environ, 4:163-173

E. M. Patterson and D. A. Gillette, 1977, Masurements of Visibility vs
Mass-Concentration for Airborne Soil ftrtitlas, Atmos Environ 11193-
196
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e - f Irr 2Qe(m,x)n(z)dt , (1)

0a = fn 2Qa(mx)n()d , (2)

L= f fr 2G(m,x)n(t)dt , (3)

M f - n 3 n(z)dz , (4)

where P is the smoke aerosol density, Qe (m,x) and Qa (m,x) ate the
efficiency factors for extinction and absorption for a particle with
refractive index m and size parameter x = 2w/X, and G (ie,x) is the
backscatter efficiency (or gain) defined as the ratio of the backscatter
cross section to the geometric area. These efficiency factors multi-
plied by wt2 give the corresponding single-particle cross sections. In
general the extinction, absorption, and backscattet efficiencies are
rather complicated functions of particle size, refractive index, and
wavelength.

Examples of the behavior of the efficiency factors for extinction (for
38 percent sulfuric acid in water at wavelengths X - 0.55m, 9.5om),
absorption (for 38 percent sulfuric acid at X = 10.6um), and backscat-
tering (for 75 percent sulfuric acid at X - 0.694um) ate shown in fig-
ures 1 through 4. Numerous other examples for other smokes and other
wavelengths are given in the appendix, figures A-1 through A-10.

For particles large compared to the wavelength (x >> 1), e * 2 andIra- 12
Qa I - I as shown by Chjlek;3 for small particles (x << 1),
mote complicated expressions can be worked out for Qe and Qa
(Penndorf).' For particles having sizes outside the large particle
asymptotic region and the Rayleigh region, the rigorous lMie theory must

'Petr Chilek, 1975, Asymptotic Limits of the Hie-Scattering
Characteristics, J Opt Soc Amez, 65:1316-1318

IR B. Pensdotf, 1962, Scatte Ing and Extinction Coefficients for Small
Spherical Aerosols, J Atmos Si, 19:193
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Figure 1. Efficiency factor for extinction Qe for 38 percent sulfuric

acid (62 percent water) droplets at a wavelength A - 0.55=jz
(index of refraction m =1.394-01) and its approximation by
a straight line Qe (x) -cx for x :Sx. The approximation
overestimates the exact value of Qe at 'small size parameters
x, and underestimates it at larger x (still with x <S.)
These two errors tend to cancel out in the evaluation of the
integral in equation (1).
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Figure 2. As in f igure I except for A - 9.5tzub. Due to the large
imaginary index at this wavelength (a -1.46-0.381) the
character of the Qe(x) curve differs markedly from that at A

- 0.55ta. The Qe(z) curve again lends Itself to
approximation by a straight line Q.(x) - ex for x < x, in

this case more accurately than the Q4 (x) curve in figuare
1. As in figure 1, the approximation overestimates the
exact value of Q~for some size paramters x, but
underestimates it %or others (with x < xa) leading to
cancellation of thoe errors in the evaluation of the
integral In equation 1. Ucuever, since the approximation is
so good for all site parmters x < %It is not necessary
for particles of a polydispersiont to hasite p10 Areete x
throughout the romge o <4C 3t(x for the linear relation (5)
to be fasirly accurattse, as casgllation of errors Is not so
important (as It is at I 151)
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Figure 3. As *in figure 2 except for the efficiency factor for
absorption at N~ - 10.6~m (refractive index of 38 percent
sulfuric acid at this %avelength is taken to be m
1.48-0.1.7i). The Qa(x) curve can be uell approximated by a
straight line Q a(x) -c'x for x 5. xm leading to the
size-distr ibution-independent linear relation betiueen
aerosol absorption coefficient and mass content according to
equation (6).

10 75% SULFURIC ACID

(, X-O. 6 94Mpm
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0 4x 2- 1 0 2

SIZE PARAMETER X

Figure 4. Normalized backscatter gain G for 75 percent sulfuric acid
droplets at t 9e ruby laser wavelength X - O.694mm (a -
1.428-2 x 10- i) and its approximation by a straight line
G(x) - c**x for x <xe. 7he approximation overestimates the
exact value of g at some sire parameters x u
underestimates it at others (still with x < x~) hs w
errors tend to cancel out in the evaluation oYthe integral
in equation (3). For backscatter this cancellation of error
is particularly Important (as compared to extinction and
absorption In figures 1 through 3) because for some size
pareseters (for example x - 8) the Value Of C - c" x differs 2

considerably from the exact value. However, wei do not.
necessarily have to have parttcles with radii throughout the
entire range 0 < x <xe for emellation of errors to occur.
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generally be used. However, we propose to approximate the efficiency
factors Qe(X), Qa(x), and G(x) for particles having radii less than some
maximum value im (where rm = xSX/2w) by linear functions of particle
size parameter Qe = cx, Q = c x, and G = c"x as shown in figures 1
through 4 and A-i through 8A-1O. The parameters c, c', and c" are then
functions only of particle refractive index which is, in turn, a func-
tion of material composition and wavelength. This approximation proce-
dure was originally used by Chilek' for atmospheric cloud and fog
droplets. The consequence of utilizing these simple linear
approximations for the Mie efficiency factors in the expressions for
aerosol extinction, absorption, and backscatter coefficients given by
equations (1) through (3) are far teaching. This is because these
expressions now contain the integral fr 3n(r)dt, and thus the
coefficients become proportional to aerosol mass and independent of the
particle size distribution n(r):

3wC M , (5)-e = X

1 -j--M, (6)

% 3c" (7)

where c(X), c'(X), and c"(X) ate the slopes of the straight lines ap-
proximating the Mie efficiency factors as in figures 1 through 4 and A-1
through A-10. If the refractive index m(X) is a slowly varying function
of wavelength, then we might expect c(X), c'(X), and c"(X) to be slowly
varying functions of uavelength leading to the extinction, absorption,
and backscatter coefficients ce, 0a, and %s being proportional to
I/ .

7Petr Chylek, 1978, Extinction and Liquid Wbter 06ntent of Fogs and
Clouds, J Atmos Sci, 35:296-300

R. G. Pinnick, D. L. HoihJelle, G. Fetnandez$ E. B. Sternmak, J. D.
Lindberg, S. G. Jennings, and G. B. Hoidale, 1978, Vetical Structure in
Atmospheric Fog and Haze and Its Effects on IR and Visible Extinction, J
Atmos Sci, 35:2020-2032

'Petr Chilek, J. T. Kiehl, and M. C(. W. Ko, 1979, Infrared Extinction
and the Mass Concentration of Atmosphezic Aetosols, Atms Enviton,
13:169-173

1A.
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The equation (5) relating aerosol extinction coefficient and mass con-
tent is distinctly different from that of Box and McKellar" who derived
a relation between spectrally integrated aerosol optical depth and
columnar mass content. The primary distinction is that Box and
McKellar's result is integrated over all wavelengths, whereas our
expression (5) holds at a particular wavelength. Also, Box and McKellar
do not approximate the extinction efficiency factor by a linear function
of size parameter.

It might be argued that in some cases approximating the extinction
efficiency factor Qe (figure 1) and the backscatter gain G (figure 4)
with linear functions of particle size parameter might be rather precar-
ious. However, note in these cases that for some values of x < xm the

Qe = cx (or G = c"x) approximation overestimates the exact Mie result,
while for other values of x < xm the opposite is true. These approxima-
tions are more accurate if size distributions of particles have a range
of size parameters throughout much of the regime o < x < xm so that
cancellation of errors in evaluation of the integrals in equations (1)
and (3) can occur. Chance of cancellation is particularly important in
backscattering, where differences between the approximation and the
exact Mie result are sometimes large.

Keeping in mind the cancellation-of-error factor, we have carried out
the procedure of approximating the extinction, absorption, and backscat-
ter efficiency factors for phosphoric acid, HC, diesel oil, fog oil, and
FS smokes at selected visible and IR wavelengths. Concentrations of 20,
50, 65, and 85 percent orthophosphoric acid in water; 20, 65, 50, 40,
and 75 percent zinc chloride in water (HC smoke); and 38, 75 percent
sulfuric acid in water (FS smoke) were used in the calculations. The
indexes of refraction for the orthophosphoric acid and zinc chloride
solutions were measured by Querry and Tyler"' and provided by M. E.
Milham of the Chemical Systems Laboratory.* The index values for fuel
and petroleum oils were taken from Conner and Hodkinson"' and Hale et
al; "' those for the sulfuric acid solutions were taken from Palmer and
Williams. * 4

'%4. A. Box and B. H. J. McKellar, 1978, Direct Evaluation of Aerosol
Mass Loadings from Multispectral Extinction Data, Quart J Roy Meteorol
Soc, 104:755-781

' . R. Querry and I. L. Tyler, 1978, Complex Refractive Indices in the
Infrared for H3P04 in Water, J Opt Soc Am, 68:1404

*Private communication, 1978

' . D. Conner and J. R. Hodkinson, 1967, Optical Properties and Visual
Effects of Smoke-Stack Plumes, US Department of Health, Education, and
Welfare, Public Health Service Publication, 999-AP-30

I 8G. M. Hale, I. L. Tyler, and M. R. Querry, 1978, Complex Rfractive
Indices in the Infrared for Selected Oils and Alcohols, J Opt Soc Am,
68:1403

Y. F. Palmer and D. Williams, 1975, optic 0 onutanlfurie
Acid: pplicAtion to the Clouds of Venuse 6pp Opt h-0-l9

12
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The results for aerosol extinction and absorption are summarized in
tables A-i through A-13 in the appendix. Given for various wavelengths

ate values of the slope parameter c (or c') of a straight likle approxi-
mating the efficiency factor Qe(mlx) (or Qa[m,x]) for x <!.xm (or equiva-

lently for t <am); values of the quantity 3wc/2Xp (or 3ic'/2Xp) which
if multiplied by the smoke mass content give the extinction (or absorp-
tion) coefficient according to equations (5) and (6); and values of the

ratio of absorption to extinction coefficients a /Oe. Estimates of
maximum errors in the values of 3lrc/2XP (or 3wc'h2X0) resulting from

errors in the Qe = cx (or Qa - c'x) approximation are also shown in the
tables. No values are shown when the estimated errors exceed 100 per-

cent. The reader should be cautioned that the values of the ratio of

absorption to extinction coefficients a /a can be used only if the
maximum radius conditions are satisfied Fo eboth extinction and absorp-
tion.

Some obvious conclusions drawn from tables A-I through A-13 are as
follows:

a. For phosphoric acid solutions in water (tables A-i through

A-4), the slope parameter c(X) is a- slowly varying function of wave-
length for 3m < X < 5n. This implies that the extinction coefficient
should have l/X wavelength dependence in this spectral region according
to equation (5). The same conclusion applies to the HC smoke solutions

(tables A-5 through A-9) where .the slope parameter c(A) is even less
sensitive to wavelength in the 3Pm to 4um region. For the longer 8um to
121 wavelength range the slope parameter c(X) varies by up to a factor
3.4 for phosphoric acid solutions, while in the case of HC smoke the
variation is markedly less (at most 50 percent).

b. Phosphoric acid solutions generally have a much lower single
scattering albedo than HC smoke solutions. For example, in the 3.5M to

4tin region the percentage of scattering to extinction is at least 90
percent for HC solutions as compared to 50 to 90 percent for phosphoric

acid solutions.

c. For petroleum oil smokes (tables A-10 and A-11) the variation
of c(X) throughout the IR is small (about 30 percent), indicating an
approximate l/X dependence of extinction coefficient; this is also the

case for absorption in the 81m to 12= wavelength range. There is,
however, considerable fluctuation in c'(X) (up to a factor of about 5)
for petroleum smokes in the 3un to 5i region.

d. For FS smoke of given mass, 38 percent acid is more effective

in causing extinction in the wavelength range 3m < A .Sum than is 75

percent acid, as can be seen by comparing values of 3vc/2Xp in tables

A-12 and A-13. The opposite is true for 8a S, .<12mm.

A summary of the G - c"x approxination results relating smoke backacat-

ter coefficient to smoke mass content is presented in table A-14. Shoun

fox the ruby () - 0.694ps) and neodymium-YAG (), = 1.06h) lamer %ave-

lengths ate values of the axisum radius xr, values of the slope pata-
otet e"(1), and values of the quantity 3c /8XP which if mltiplied by

the smoke mass content give the smoke backscattet coefficient %
according to equation (7). Note, however, that conaideration of even

slfhtly different coaplex tefractive indexes arkedly changes the

gumetionl foza of the backecattet pin and hence the value of c"(X).



APPLICATION TO PHOSPHORIC ACID,
HC, PETROLEUM OIL, AND FS SMOKE

Before we can have confidence in applying the linear relationships (5)
through (7) between smoke aerosol extinction, absorption, backscatter,

and mass content, we should test their validity with existing measure-
ments that are available. Carlon et al,'5 Milham et al,16 and Milham"'
have measured the transmission through phosphoric acid, red phosphorus,
HC, petroleum oil, and sulfuric acid smokes. Most measurements were

made in the 3jm to 5m and 7pm to 13um wavelength ranges, although
transmission measurements for petroleum oil smoke and FS were made for A

= 0.36 m to 2.35um. The same transmission cell was used for all of the
above work and consisted of a 22 m3 cylindrical test chamber with a
transmission path L of 3.05 m length. A smoke mass content measurement
was made simultaneously with the transmission measurement by weighing

particles collected onto filters.

The extinction coefficient-mass relation (5) must be compared cautiously

to measurements of these quantities. The reason is that since extinc-

tion coefficients are derived from transmission measurements, forward
scattering corrections"' 1' and mxltiple scattering corrections should

be considered. Forward scatteringcorrections arise from singly scat-
tered photons that enter the detector along with the unscattered

(direct) radiation due to the finite angular aperture of the detector.

Similarly, multiple scattering corrections arise from signal contributed
by multiple scattered photons. Both these effects cause increased
detector signal and hence result in a smaller inferred extinction

coefficient if they are not taken into account. We estimate the forward

scatter corrections for the experimental setup used by Carlon and Milham

to be not more than 3 percent and have neglected them; however, no

attempt was made to make quantitative estimates of multiple scatter
corrections.

'H. R. Carlon, D. H. Anderson, M. E. Milham, T. L. Tarnove, R. H.
Frickel, and 1. Sindoni, Infrared Extinction Spectra of Some Common

Liquid Aerosols, Appl Opt, 16:1598-1605

"M. E. Milham, D. H. Anderson, R. H. Frickel, and T. L. Tarnove, 1977,

New Findings on the Nature of WP/RP Smokes, Technical Report ARCSL-TR-

77067, US Army ARADCCO, Chemical Systems Laboratory, Aberdeen Proving

Ground, MD 
I

'4. E. ilhm, 1976, A Catalog of Optical Extinction Data for Various

Aerosols/Smokes, Report ED-SP-77002, Edgewood Arsenal, Aberdeen Proving

Ground, MD

" 'A Deepak and M. A. Box, 1978, Forward Scattering Corrections for
Optical Extinction Measureaments in Aerosol Media. 1: 14onodispersions,

App Opt, 17:2900-2908

'$A. Deepek and M. A. Box, 1978, Forward Sattering Corrections for
Optical Extinction Ybasuramnts in Aerosol Media. 2: Polydisperslons,

-Ap t17:3169-3176-

., ...... 2 ..... !11'1141!I~i



PHOSPHORIC ACID AND RP SMOKE

The extinction coefficient-mass relation (5) for 60 percent phosphoric
acid smoke is compared to measurements of Milham et al"' in figures 5
and 6. The agreement is good in both the 30n to 5im and 8um to 12uim
spectral regions, as the relation (5) generally overpredicts the extinc-
tion to mass ratio a /M, but by not more than about 30 percent [here the
slope parameters c(i) were determined by using refractive indexes for 65
percent phosphoric acid rather than 60 percent acid]. This good agree-
ment is not unexpected as the extinction efficiency factors are well
approximated by linear functions of particle size parameter in the 3um
to 5 m and 8 w to 12)n spectral regions (see for example figures A-i and
A-2) and the maximum radius conditions are not strongly violated.

In contrast to the phosphoric acid results, comparison of the relation
(5) to Milham's 7 measurements on RP smoke (figure 7) shows relatively
poor agreement in the 8un to 12 m spectral region. The reason for the
poor agreement is that the burning of RP/WP smokes apparently results in
production of an unknown chemical species " whose refractive indexes

'2.0VE PHOSPHORIC ACID (60%)S1.8

Z 1.6
i 1.43c

.4 0 THEORY (Oe - 2 M)

W 1.2 - MEAS.(MILHAM eol,1977)0
0 1.0
z
o 0.8
000.6 0 oZ 0 0. .
1 0.4-X
W
( 0.2

4 0 .
S2 3 4 5 6

WAVELENGTH (urn)
Figure 5. Values of the ratio of aerosol extinction coefficient to 9

mass content predicted according to the linear relation (5)
(open circles), and measured by Milhm et al (solid line)
for 60 percent phosphoric acid aerosol. Since the parameter
c(X) is nearly wavelength independent (see table A-3) the
relation (5) predicts extinction to have an approximate 1/k
wavelength dependence in the 3um to Spa spectral region.

1 %. E. Milham, D. H. Anderson, R. H. Frickel, and T. L. Tarnove, 1977,
New Findings on the Nature of WP/RP Smokes, Technical Report ARCSL-TR-
77067, US Army ARADCOM, Chemical Systems Laboratory, Aberdeen Proving
Ground, MD

INH. I. Milham, 1976, A Catalog of Optical 22tinction Data for Various
Asrosols/Swokes, Report ED-SP-77002, Idg.ood Arsenal, Aberdeen Proving
Ground, ND

'is
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Figure 6. Same as figure 5 except for the 7p= to 14um spectral
region. In this case the parameter c(X) has considerable
spectral character. The agreement bett-een measurement and
theoty is uithin 30 percent.
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1igute 7. Ratio of aetosol extinction coefficient to mass content

predicted according to lineat telation (5) (open circles),

and measuted by tMilham (solid and dashed curves) fot led

phosphorus (11') omoke disseminated by burning. The tAo

measurement curves are fot different batches of IOIKIe iiith

different optical depths (the optical depth at 
a particular
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cannot be approximated by those of phosphoric acid (which was assumed in
determination of c(l) in relation (5)].

HC Smoke

Compared to the highly absorbing phosphoric acid smoke, little spectral
character is evident in the predicted or measured a /M values for HC
smoke (figures 8 and 9). The predicted values of ae/9 have approximate
i/X wavelength dependence in both the 3um to 5um and 8om to 12um re-
gions, as the slope parameter c(A) is only a slowly varying function of
wavelength. Although this 1/X dependence is borne out by the measure-
ments in the 3=zn to 5in spectral region, for the 8 um to 12wio range the
measurements show nearly neutral (wavelength independent) extinction.
This markedly different spectral character for the predicted and mea-
sured extinction in the 8un to 12um range can be at least partially
explained on the basis of errors in the Qe = cx approximation. Perusal
of the Qe versus x curves (examples of which are given in figure A-5)
suggests that the relation (5) should overestimate the value of a_/M
throughout the 8=m to 12gm spectral region (as the HC smoke particles
will have size parameters predominately less than x a 2 and cancellation

of errors does not occur) and the overestimate should be more at X - 8um
compared to X - 12in. Thus larger disagreement between predicted and
measurement results at X - 8iim compared to X - 12um. Also, multiple
scatter contributions might account for some of the discrepancy between
the predicted and measured oe/M values in figure 9, but this is unlikely
in view of the fact that the transmission has the same spectral depen-
dence for two widely differing optical depths (the optical depths can be
determined by multiplying the ae/M values by the value of ML, and are
about 0.14 and 1.1 for the solid and dashed curves, respectively).

Fog Oil Smoke

Carlon et al'5 describe transmission measurements through petroleum oil
smokes generated either by dropping oil onto a hot plate, which results
in droplets with volume mean radius of about 1.7um, or by pyrotechnic
generation, which produces smaller droplets with volume mean radius of
about 0.3 zm.

19H. R. Carlon, D. H. Anderson, M. E. leilhan, T. L. Tarnove, R. HI.

Frickel, and I. Sindonl, 1977, Infrared Ixtinction Spectra of Some

Common Liquid Aerosols, AppI Opt 16:1598-1605



2.4 HC SMOKE (52% ZnCI2)

1'-2. 0 THEORY (oe 3-CM)

MEAS.(MILHAM,1976;PYRO DISSEMINATION)

uM.L 1.44-MLI442
LLW
0
U 1.2-
z
0

0.0
z

X 0

W 0.4-

,0 ~ 3.5 4.0 4.5 5.0
WAVELENGTH QsLm)

Figur e 8. Ratio of aerosol extinction coefficient to m~ass content
predicted according to the linear relation (5) (open
circles), and measured by Milham (solid curve) for RIC anoke
disseminated by pyrotechnic. As for phosphoric acid smoke.
the predicted and measured extinction has roughly 1/X~
iavelength dependence in the 3ws to 5= spectral region.
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Figure 9. Same as figure 8 except for the 7um to 13iam spectral
region. The linear relation (5) (open circles) again
predicts a 1/)X dependence of extinction; however, the
Isasutments show a slight increase of extinction with
wavelength. This disagreement betweenk telation (5) and
measurements Is atttibated to inaccutacy of the On cx
appioximation (see test and figur-e A-5).



The transmission measurements for the larger fog oil droplets generated
by hot plate dissemination are compared to the prediction (5) in figures
10 and 11. For the 3mm to 5pm spectral region (figure 10) the predicted
a /M values have roughly l/X wavelength dependence and ate in agreement
ulth the measurements within a factor 2. Note that the extinction
measurements at the smallest optical depths in figure 10 (the optical
depths range from 0.38 to 0.72 for the solid-cuive measurement) ate a
factor 1.5 to 3 higher than those for the larger optical depths (which
range from 1.8 to 3.5). Whether this difference is a reflection of
multiple scatter contributions to the transmission signal at the larger
optical depths (which would cause the extinction coefficient to be
underestimated from the transmission measurement), or whether it is
simply a reflection of the experimental errots is not known. For the
8tm to 12=i region, the Qe- cx approximation (5) oveipredicts the
extinction to mass ratio Oe/M by a factor 1.2 to 4 (figure II).

This overptediction is even more serious for smaller fog oil smoke
particles as demonstrated by comparison of measured and predicted ae/M
values in figures 12 and 13. These particles were generated by pyro-
technic dissemination and have correspondingly smaller size
parameters. Thus the usefulness of relation (5) for fog oil is only
marginal in the 3to to 5um and 8um to 12urm IR spectral regions, as the
Mie extinction efficiency is generally not well approximated by a linear
function of size parameter in these wavelength regions.

FS Smoke

The final comparison of extinction to mass content Oe/M according to
relation (5) compared to measurement is for sulfuric acid mists gen-
erated by Carlon et al. " Their results for 38 percent sulfuric acid
smoke for the X - 0.5to to 2.5a, 7m to 14um spectral regions compared
to out size-distribution-independent relation (5) ate shoun in figures
14 and 15. The error bats superimposed on ?he measurements mark the
range of values obtained for several radiometer scans.* For the 7iim to
14=, spectral region, the Qe - cx approximation given by (5) is gen-
erally within error of measurement. On the other hand, the equation (5)
prediction generally overestimates the meaburements in the 0.55mu to
2.75m wavelength range.

'H. t. Carlon, D. f. Anderson, . . Nilhm, T. L. Tarnove, R. R.
Frickel, and 1. Siadoui, 1977, Infrared Extinction Spectra of Sose
Common Liquid Aerosols, Ap2 Op 16:1596-1605

*ft. R. Cation, private coamnlestion, 1978
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Figure 10. Ratio of aerosol extinction coefficient to mass content
predicted according to the linear relation (5) (open
circles) and measured by Milhm (curves) for fog oii moke
generated by dropping oil onto a hot plate. The different
curves are for transmission measurements made with different
batches of fog oil with varying optical depth (the optical
depth for a particular wavelength can be estimated by
multiplying the value of qe/H by the value of ML). Smaller
values of extinction coefficient are inferred from
transmission measurements made at larger optical depths,
suggesting that multiple scatter contributions may be
becoming important.
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Figure 11. Same as figure 10 except for the 7ym to 13u1= spectral
region. Th. overprediction of extinction according to the
linear relation (5) (open circles) is partially cased by
inaccuracy of the Qe- cx approximation (e.g., figure
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measured by Milbam (curves) for fog oil smoke generated by
pyrotechnic. The measured extinction is significantly less
than for the larger hot-plate generated smoke particles
(e.g., figure 10). The relation (5) severely overestimates
the extinction as a result of inaccuracy of the Qe -CX
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Figure 14. Values of the ratio of aerosol extinction coefficient to
aerosol mass content predicted accor ding to the
size-distr ibution-independent' linear relation (5) (open
circles connected by the dashed line) and measured by Cation
et al (curve) for 38 percent sulfuric acid (62 percent
r ater) aerosol. The linear relation (5) predicts extinction
to have an approximate i/l ' avelength dependence in the
spectral region 0.55 S_ A 5.l.75sm. The linear relatton (5)
is in best agreaenet with aaeumment at A 
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maxinium radius condition for these aerosols is satisfied
(about 98 percent of the aerosol mass is contributed by
particles with radii r < zm), and particles have size
parameters throughout the range 0 <. x <-- xu  so that
cancellation of error in the -e cx approxim~tion occurs
(e.g., figure 1).
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The relation (5) works so well in the 7pm to 14urm spectral region as
compared to the 0.55=m to 1.7 5=n region because: (1) the maximum radius
conditions ate easily satisfied at these longer wavelengths (maximum
radius values are on the order of 3um to 7 ti from table A-12) as only
about 2 percent of the sulfuric acid aerosol smoke mass is contributed
by particles with radii r > lm, (2) for r < 1m, the Mie extinction
efficiency factor is accurately approximated by Qe - cx as, for example,
in figure 2.

PRACTICAL APPLICATIONS OF THE

oe - M, oa - M, AND abs - M RELATIONS

Unique relations between radiative properties of smoke aerosols and

their mass content should be of considerable practical value. For
example, according to the extinction-mass relation (5), the integrated
mass content of smoke along a path could be determined from an IR

transmission measurement between the endpoints of the path. The path
must be short enough that multiple scattering effects and attenuation
caused by gaseous absorption are negligible; also, foruardscatter
corrections must be small. ", 19 Thus, for a CO2  laser (X - 10.6nm)
transmission loss of 0.5 over a 100-m phosphoric acid (50 1 etcent) smoke

path, a path-integrated average mass content of 0.016 g m - is predicted

according to relation (5) using the value of 3wc/2kp from table A-2.
Similarly, had the smoke consisted of HC (50 percent zinc chloride in
%ater) or FS (38 percent sulfuric acid in water) rather than phoiphoric
acid, smoke mass contents of 0.046 g m -3 and 0.022 g m -3 would result

(from values of 3wc/2Xp in tables A-7 and A-12).

An application of the relation (6) between absorption and liquid mass

content of smokes would be the inference of smoke mass at a particular
point in a smoke cloud from an in situ measurement of the aerosol

absorption with an IR laser spectrophone. Smoke particles generally
have maximum radii of lm to 2on, and tables A-1 through A-13 show that
the maximum radius condition for the 0a - M relatiorn (6) is satisfied
for most IR wavelengths considered. For example, an absorption measure-
ment with a CO2 laser spectrophone of 10 km-  (using the value of
3wc'/2XP from tables A-3, A-8, and A-13 at X - 10.5mm) corresponds to
mass contents of 0.040, 0.31, and 0.054 g m -3 for 65 percent H3P04 , 65

percent ZnC12 (HC), and 75 percent sulfuric acid smokes.

18A. Deepak and M. A. Box, 1978, 1ortaid Scattering Corrections for
Optical Extinction easurewents in Astosol NMdia. 1: 1bnodisperslona,
Appl Op, 17:2900-2908

.9A. Deepak and M. A. Box, 1976, otazd Scatteting Corrections for
Optical Etinction Y"ewauents in Atesol Mdia. 2: PolydispeasLone,
A Opt, 17:3169-3176

II
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The relations (5) and (6) can also be used to estimate the single scat-
tering albedo for polydispersions of smoke particles. The albedo is
defined as the ratio scattering to extinction and is an important param-
eter in determining the contrast obtainable by an IR sensor such as a
forward looking infrared system (FLIR). From relations (5) and (6), the
single scatter albedo %o is a simple function of the slope parameters
c(m) and c'(m):

S e a c
o 1 = -(8)

e e

where the refractive index m is characteristic of the smoke material at
the wavelength of interest. Values of c and c' from tables A-I through
A-13 must be substituted cautiously into equation (8) to obtain the
single scatter albedo since the maximum radius conditions for the smoke
particles (which are also given in the tables) must be satisfied for
both extinction and absorption. However, these conditions are generally
easily satisfied for all smokes considered here in the 3irm to 5wm and
81m to 12m spectral regions. Finally, because of the large errors
involved in the Qe = cx approximation for only slightly absorbing parti-
cles, the application of equation (8) to HC, diesel oil, and fog oil
smokes is not recommended when errors in the quantity 31rc/2XP exceed 50
percent (see footnotes of tables A-I through A-13).

The last application suggested here toward a specific DOD hardware
system concerns the relation (7) between smoke backscatter coefficient
and mass content. The copperhead missile seeker system sometimes relies
on an Nd-YAG laser backscattet signal to find its target. If the inter-
vening atmosphere between the missile and target contains smoke parti-
cles, the performance of the seeker system may be degraded because the
backscatter signal from the smoke obscurant may obfuscate that from the
target. According to relation (7) the backscattez from the smoke may be
calculated directly from knowledge of the integrated smoke mass content
between seeker and target (neglecting multiple scattering effects). For
example, a cloud of 50 percent phosphoric acid smoke with mass loadinf
0.1 g m-3 would result in a backscatter cross section of 0.0034m- 1 sr
at X - 1.06mn.

*CCMPARISON OF EXTINCTION COEFFICIENTS OF PHOSPHORIC
ACID AND HC SMOKE AT VARIOUS RELATIVE HUMIDITIES

Another application of these approximations is toward the radiative
properties of hygroscopic smoke particles. Phosphoric acid and HC smoke
particles ate hyroscopic. They gro% at the expeanse of atmospheric
water vapor to equilibiuam sizes larger than their original sies,
depeding on the atmospheric toppetatme and .relative humidity. This
increase im se Sometimes causes iucseaed extiaction and
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obscutation. To make a comparison of the effectiveness of these two
smokes, we compare their extinction coefficients as a function of rela-
tive humidity, taking into account that their mass content increases
wJth relative humidity. We require that the initial "dty" mass contents
be the same:

()(1) (2) (2)
P o P Vo  , (9)

(1) (2)
where 6 Po are the dry density values of the smoke materials (1)

(1) (2)
and (2) and Vo  , Vo  are their initial volumes.

To predict the volume increases, we use the results of Hinel* for the

fractional radius increases (r/tr) of phosphoric acid droplets (table
A-15) and HC smoke (table A-16) as a function of relative humidity f.
The results are based on Hanel's original work."' The tables show that
the fractional increase in the smoke particle radii is nearly indepen-
dent of the initial particle radii. Thus we can assume to first order

that the fractional radius increases r/ro are independent of particle
size, leading to the smoke volume content at relative humidity f being
given by (/r 0 )3v 0. Using the approximation (5) relating extinction
coefficient to aerosol mass content, we can write the extinction coeffi-
cient at relative humidity f as

3 ire 3

ae(f) c-(o) V0 " (10)

The ratio of phosphoric acid to HC smoke extinction coefficients (under
the constraint that their initial dry mass contents be the same) is then

e e (1)

The values of this ratio calculated for relative humidities from 40 to

95 percent at several wavelengths ate given in table A-17. For relative

*Private communication, 1978

20. Hinel, 1976, The Ptoperties of Atmospheric Aerosol Particles as

Functions of Relative Humidity at Thetmodynamic Bquilibtium with the
Surtounding Moist Aiz, Adv in Oeophys, 19:73-188
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humidities f < 80 percent, phosphoric acid is a more effective obscurant
(as it has a greater extinction coefficient) in the visible and 1O.5wm
to 12n spectral regions, but less effective in the 3um region.
Results for the 4un to 10m spectral region have been purposely left out
since we expect the Qe = cx approximation (5) to be substantially in
error for HC smoke in this region. For a relative humidity of 95 per-
cent, HC smoke is mote effective at all considered wavelengths.

CONCLUS IONS

We have shown that a linear relation, independent of the form of the
size distribution, should exist between volume extinction coefficient,
absorption coefficient, backscatter coefficient, and mass content of
several military smokes. However, the relation is valid only at pattic-
ular wavelengths determined by the range of particle sizes present in
the polydispersions of smoke particles. Our prediction between extinc-
tion coefficient and mass content has been compared to transmission
measurements available in the literature on phosphoric acid, HC, fog
oil, and FS smokes. The agreement is good (generally within 30 percent)
for highly absorbing phosphoric acid and FS smoke in the 3uin to 5um and
8m to 12 = spectral regions, but only fair-to-poor for weakly absorbing
HC and fog oil smokes (the relation overpredicts extinction by as much
as a factor 2.5 for HC and 10 for fog oil generated by pyrotechnic).
Four applications of our relationships between smoke aerosol extinction,

absorption, backscatter, and mass content are suggested: (1) inference
of path-integrated mass content of smoke from an IR laser ttansmissome-
ter measurement through the smoke cloud, (2) determination of smoke mass

content at a particular point in a smoke cloud from a smoke aerosol
absorption measurement at that point with an IR laser spectrophone, (3)
determination of smoke backscatter coefficient from knowledge of smoke
mass content, and (4) prediction of the extinction coefficient of phos-
phoric acid and HC smoke as a function of atmospheric relative humidity.

4 6,
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APPENDIX.- FIGURES A-1 THROUGH A-10

AND TABLES A-i THROUGH A-17

.7-

6 20% PHOSPHORIC (mn-1.371-0.0141)
6 0% PHOSPHORIC (mn 1,I384-0.090

0 85 % PHOSPHORIC (mn 1,406-0 1480 7/
z7

5-X

94-

W 0 PHOSPHORIC ACID

010 15
SIZE PARAMETER X

Figute A-1. Efficiency factors fot extinction Qe fat phosphoric acid
droplets at a wavelength A -3.8(m, and their approximation
by straight lines Qe(x) - cx. The efficiency factors ate
w~ell approximated by the straight lines up to some maximum
size parametet (indicated by the vertical lines).
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Figute A-2. Bass an figame A-1 bulY fox A - 10-311111 Note the slope
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Figure A-3. Same as figure A-1 only for HC smoke droplets at a
wavelength X~ - 0.55)in. In this case particles mst have
size parameters x Z 6 (corresponding to radii r - 0.5mm)
for the Qe = cx approximation to apply. Since HiC smoke
particles generally violate this condition (e.g., ?4ilham
1976, reports size distributions of HiC smoke having mass
mean radii of 0-66mn), the linear relation (5) will
probably overestimate extinction at X - 0.55wa.
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TABLE A-I. 20 PERCENT ORTHOPHOSPHORIC ACID IN WATER

(density 0 - 1.1134 g cm- 3 )

At a given wavelength A the efficiency factor for extinction Qe (and

absorption Q.) for phosphoric acid smokes can be approximated by a linear

function of size parameter Qe = cx (or Q. = c'x) for size parameters x <XM,

or equivalently for particle radii r <r m . The values of rm and c (and c')

are determined from the efficiency curves (see for example firgure A-l). If a

polydispersion of phosphoric acid droplets has particles with radii r < r1M ,

from the table we can find the wavelengths for which a linear relationship

between extinction (or absorption) and aerosol mass content exists, and the

appropriate value of the parameter c (or c). The value of the quantity

3wc/2Xp (or 3wc-/2XP) multiplied by the smoke mass content M gives the

extinction coefficient ae (or absorption coefficient aa). Also given in the

table is the ratio of the absorption to the extinction coefficient aa/C e . The

single-scatter albedo wo = I - ca/ae .

Extinction Absorption

3_c_ 2 1 31Tc' 2(lm) c rm(ljm) (M 9g ) r(UM) ;-_ ) 9 a/a e

0.55 0.69 0.52 5,3 c

1.06 0.69 1.0 2.7 c

3.0 0.76 1.9 1.1 a 0.59 1.1 0.84 a 0.78

3.5 0.76 3.1 0.92 c 0.088 4.9 0.11 a 0.12

3.8 0.67 3.8 0.75c 0.054 5.8 O.060a 0.08
4.0 0.67 4.0 0 .71c 0.058 6.8 0.061a 0.09
4.5 - - 0.068 8.0 0.064a -

5.0 - - - 0.074 6.4 0.063a -

8.0 0.53 7.3 0.28c 0.14 10.0 0.076a 0.27

8.5 0.52 7.2 0.26 c 0.18 8.7 0.088a 0.34

9.0 0.49 8.4 0.23 c 0.16 10.0 0.074a 0.32

9.5 0.45 8.7 0.20b 0.17 10.1 0.077a 0.38

10.0 0.48 7.7 0.20a 0.24 8.4 0.099a 0.49

10.5 0.43 8.6 0.17a 0.20 10.0 0.081a 0.47

11.0 0.40 7.4 0.15a 0.26 7.9 0.10 a 0.66

11.5 0.44 6.9 O.16 a 0.33 6.3 0.12 a 0.76

12.0 0.50 7.3 0.18a 0.42 5.4 0.15 a 0.85

a - Error in 3vcI2XP (or 3vc'/21) is estisaied to be less than 30 percent.
b - Error In 3wc/2A (or 3we/2 1) Is extimted to be less than 50 percent.
c - Error in 3Sw/2x (or 3w'/21o) to estimated to be lese than 100 percent.
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TABLE A-2. 50 PERCENT ORTHOPHOSPHORIC ACID IN WATER

(density p= 1.335 g cm-3)

Extinction Absorption

x(_m) C rm 2 g') c r((1m) -3c'

(2.!:m) 3ir mu ) 2, ae

0.55 0.72 0.50 4.7 c

1.06 0.72 0.96 2.4 c

3.0 0.62 2.2 0.74a 0.39 1.4 0. 4 6 a 0.63

3.5 0.68 2.7 0.68b 0.30 2.2 0.30a 0.43

3.8 0.70 3.0 0.64b 0.25 2.9 0. 2 3 a 0.35

4.0 0.66 3.3 0.58b 0.24 3.1 0. 2 1 a 0.36

4.5 0.69 3.6 0.54b 0.24 4.0 0 .1 9 a 0.35

5.0 0..65 4.2 0.46b 0.21 4.6 O.15a 0.33

8.0 0.58 5.0 0.26a 0.40 4.4 0.18a 0.69

8.5 0.72 4.0 0. 3 0a 0.54 4.1 0. 2 2 a 0.74

9.0 0.79 4.2 0.31 a 0.52 4.3 0.20a 0.66

9.5 0.93 2.9 0.35a 0.83 2.2 0.31a 0.89

10.0 1.59 2.7 0 . 5 6 a 1.41 1.6 0.50a 0.89

10.5 1.30 4.3 0.4 3a 0.70 4.3 0.24a 0.54

11.0 1.05 5.2 0.34 a 0.53 5.5 0.17a 0.51

11.5 1.00 5.9 0. 3 1a 0.52 5.7 0.16a 0.52

12.0 0.92 6.2 0. 2 7 a 0.48 6.4 0.14a 0.52

a - Error in 3*&/2), (or 3wc'/2xo) is estimated to be le than 30 percent.
b - Error in 31c/2XP (or 3v'/2kp) is estimated to be less than 50 percent.
c - Error in 3we/2Xp (or 3we'/2xp) Ie estimted to be le than 100 percent.
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TABLE A-3. 65 PERCENT ORTHOPHOSPHORIC ACID IN WATER

(density p = 1.475 g cm- 3 )

Extinction Absorption
3rC,_pm- 3W 3T g-FC

X(pjm) c r(im) 2-C-m g1) rm(lim) /C(m2g- ) aa/M"1m 2X 2Xpae

0.55 0.83 0.44 4.8 c

1.06 0.83 0.85 2.5 c

3.0 0.58 2.5 0.61a 0.33 1.7 0.34a 0.56

3.5 0.68 2.6 0.62a 0.35 2.0 0.32a 0.52

3.8 0.70 2.9 0.59a 0.31 2.3 0.261 0.45

4.0 0.67 3.1 0.54a 0.29 2.7 0.23a 0.43

4.5 0.72 3.3 0.51b 0.29 3.3 0.20a 0.40

5.0 0.67 3.9 0.43b 0.25 4.6 0.16a 0.37

8.0 0.62 4.0 0.25a 0.47 3.5 0.19a 0.76

8.5 0.85 3.3 0.32a 0.70 3.0 0.26a 0.82

9.0 0.93 3.7 0.33a 0.73 3.3 0.26a 0.78

9.5 1.39 2.2 0. 4 7 a 1.28 1.6 0. 4 3a 0.92

10.0 1.93 2.5 0.62a 1.66 1.6 0.53a 0.86

10.5 1.59 3.7 0.48b 0.83 4.0 0.2 5a 0.52

11.0 1.31 4.4 0.38b 0.65 5.0 0 . 19 a 0.50

11.5 1.25 4.9 0.35b 0.59 5.7 0.17a 0.47

12.0 1.16 5.4 0.31b 0.55 5.9 0.15a 0.48

a -Error in 3w/2xo (or 3wc'/2Xo) Is estimated to be less than 30 percent.
b - Error in 3*/21p (or 3wc'/2Xp) Is estimated to be less than 50 percent.

c - Error in 3wc/2p (or 3vc'/2x) is estimated to be less than 100 percent.
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TABLE A-4. 85 PERCENT ORTHOPHOSPHORIC ACID IN WATER

(density 0 1.689 g cm- )

Extinction Absorption

(im) c rm(.m) 3C m g ) c rm(fim) 3) a/' 2 a e

0.55 0.86 0.42 4.4 c

1.06 0.86 0.81 2.3 c

3.0 0.55 2.7 O.51a 0.25 2.0 0.23a 0.46

3.5 0.70 2.3 0.56a 0.42 1.7 0.33a 0.60

3.8 0.75 2.6 0.55a 0.36 2.2 0.27a 0.49

4.0 0.70 2.9 0.4 9 a 0.36 2.2 0.25a 0.51

4.5 0.75 3.1 0. 4 7b 0.33 3.3 0.21a 0.44

5.0 0.72 3.7 0.40b 0.29 3.8 0.16a 0.40

8.0 0.69 3.2 0.24 a 0.57 3.2 O.20a 0.83

8.5 1.06 2.6 0.35a 0.83 2.8 0.27 a 0.78

9.0 1.34 2.4 0.41a 1.01 2.6 0.31a 0.75

9.5 2.17 1.7 0.64a 1.82 1.4 0.53a 0.84
10.0 2.36 2.1 0.66 a 2.04 1.4 0.57a 0.87

10.5 1.90 3.0 0.50b 1.22 2.7 0.32 a 0.64

11.0 1.65 3.9 0.42b 0.87 3.4 0.22a 0.53

11.5 1.54 4.2 0.37 b 0.80 3.8 0.19b 0.52

12.0 1.39 4.9 0.33b 0.61 5.9 0.14a 0.44

a - Error in 3wc/2kp (or 3*c'/2xp) is estiated to be less than 30 percent.
b - Error in 31ir/2Xp (or 3wc'/2kp) is *stItated to be less than 50 percent.
c - Error in 3wc/2Ap (or 3c'/21) Is estl~mted to be lees than 100 percent.
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TABLE A-5. 20 PERCENT ZINC CHLORIDE IN WATER (HC SHCKE)

(density a - 1.1866 g cm
-3)

At a given wavelength X the efficiency factor for extiuctioa Qe (and

absorption Qa) for HC smoke aerosols can be approximated by a linear function

of size parameter Qe - cx (or Oa - c'x) for size parameters x < xm or

equivalently for particle radii r < r3 . The values of rm and c (and c') are

determined from the efficiency curves (see for example figures A-3 through

A-5). If a polydispersion of HC smoke droplets has particles with radii r <

rm(X), from the table we can find the wavelengths for which a linear

relationship between extinction (or absorption) and aerosol mss content

exists, and the appropriate value of the parameter c (or c'). The value of

the quantity 31c/2kp (or 3wc/2Xp) multiplied by the smoke mass content M

gives the extinction coefficient oe (or obsorption coefficient as). Also

given in the table is the ratio of the absorption to the extinction

coefficient oa/oe. The single-scatter albedo wo - 1 - Ga/Oe -

Extinction Absorption

X(P±m) C 31-c M 2(,1) rm(Im) 3irc Mg 1  Oa/Oe

0.55 0.68 0.51 4.9 c

1.06 0.68 0.98 2.5 c

3.0 0.81 1.9 1.1 a 0.46 1.6 0.64 a 0.79

3.5 0.30 2.9 0.91c 0.086 5.9 0.10 a 0.12

3.8 0.75 3.8 0.78c 0.051 7.7 0.053a 0.07

4.0 0.72 3.8 0.72c 0.050 8.4 0.050a 0.07

4.5 - 0.070 8.3 0.062a -

5.0 - 0.070 8.9 0.056a -

8.0 - 0.12 11.9 0.058a -

8.5 - - 0.12 12.7 0.060a -

9.0 - 0.13 11.9 0.058a -

9.5 - - 0.14 11.7 0.058a -

10.0 0.45 12.0 0.18c 0.15 10.8 0.059a 0.33

10.5 0.41 11.6 0.15b 0.18 9.6 0.067a 0.43

11.0 0.39 10.2 0.14a 0.22 9.1 0.078a 0.56

11.5 0.40 10.6 0.13a 0.28 7.8 0.097a 0.70

12.0 0.47 8.6 0.15a. 0.37 6.3 0.12 a 0.80

a - Irror In 31m/21a (or 3WcI21p) is estimated to be less then 30 percent.
b - Zrror in 31x/21p (or 3W /20). is estimated to be lees then 50 percent.
c - grror in 3ft/21p (or 3w*/2Xo) is estimsted to be less than 100 percent.
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TABLE A-6. 40 PERCENT ZINC CHLORIDEIN WATER

(density p = 1.4173 g cm- 3 )

Extinction Absorption

c(UM) c rm(Jim) 2C - g C rm(m) 3-c' 0.2g a /a

0.55 0.76 0.47 4.6 c

1.06 0.76 0.91 2.4 c

3.0 0.85 1.7 0. 9 5a 0.40 1.9 0.44 a 0.47
3.5 0.86 2.7 0.82c 0.093 5.4 0.088a 0.10

3.8 0.82 3.2 0.7 2 c 0.049 7.7 0. 0 4 3 a 0.052
4.0 0.80 3.4 0. 6 6 c 0.043 8.4 0.036a 0.054
4.5 - - 0.064 8.7 0.048a -

5.0 - -- 0.066 9.6 0.044a -

8.0 - - - 0.11 11.9 0.04 6a -

8.5 " - - 0.12 12.6 0.048a -

9.0 - - - 0.12 12.4 0.046a -

9.5 - - - 0.14 11.3 0.048a -

10.0 - - 0.16 10.4 0.054a -

10.5 0.51 10.8 O.16c 0.18 10.7 0.056a 0.35
11.0 0.46 11.1 0.14b 0.21 9.3 0.064a 0.46

11.5 0.46 10.3 0.13a 0.26 8.4 0.075a 0.57

12.0 0.48 10.0 0.13a 0.33 7.4 0.0 92a 0.69

a - Error in 3v/2x0 (or 3wn'/2Xo) ja etimted to be less than 30 percent.
b - Error in 31c/2xo (or 3vc'/2Xo) la eatlu'3ed to be less than 50 percent.
c - Error in 3*c/2Xp (or 3wc'/2kp) ft etivated to be less than 100 percent.
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TABLE A-7. 50 PERCENT ZINC CHLORIDE IN WATER

(density P- 1.5681 gcm-3 )

Extinction Absorption

X(mr) c rm(um) • r- m2 g "1) c rm ( 3m) ' m2g ) Oa/Oe

0.55 0.78 0.46 4.3 c

1.06 0.78 0.89 2.2 c

3.0 0.81 1.9 0.81a 0.47 1.4 0.47 a 0.58
3.5 0.89 2.6 0.76c 0.12 3.5 0.10 a 0.14

3.8 0.86 3.0 0.68c 0.061 6.3 0.048a 0.07

4.0 0.83 3.3 0.62c 0.059 5.3 0.044a 0.07

4.5 - - - 0.058 6.2 0.039a -

5.0 - - - 0.066 5.8 0.040a -

8.0 - - - 0.099 10.8 0.037a -

8.5 - - - 0.11 11.8 0.038a -

9.0 - - - 0.13 9.7 0.042a -

9.5 - - - 0.13 11.2 0.043a -

10.0 - - - 0.15 11.1 0.044a -

10.5 0.53 11.0 0.15C 0.17 10.3 0.048a 0.32

11.0 0.52 11.6 0.14h 0.19 10.0 0.053a 0.37

11.5 0.48 11.5 0.13a 0.24 7.9 0.063a 0.50

12.0 0.51 9.5 0.13a 0.31 7.1 0.078-, 0.61

a - Error in 3wt/2Ap (or 3wc'/2)9) is eetbasted to be less than 30 percent.
b - Error is 3w./2)o (or 3Uc/24) is estimated to be les than 50 percent.
c - Error In 3wc/2%p (or 3wc€/21p) is estibated to be less then 100 percent.
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TABLE A-8. 65 PERCENT ZINC CHLORIDE IN WATER

(density o 1.851 g cm-3)

Extinction Absorption

() C3,cj-) (m C rm (11m) 3Xc' - C a/Oe

0.55 0.88 0.40 4.1 c

1.06 0.88 0.77 2.1 c

3.0 0.95 0.96 0.80a 0.43 1.6 0.36 a 0.45

3.5 1.00 2.4 0.73c 0.087 4.3 0.063a 0.09

3.8 0.97 2.8 0.65c 0.039 5.2 0.026a 0.04

4.0 0.92 3.0 0.59c 0.025 7.4 0.016a 0.03

4.5 - - - 0.037 7.1 0.021a -

5.0 - - - 0.045 6.9 0.023a ~

8.0 - - - 0.095 9.5 0.030a -

8.5 - - - 0.11 9.0 0.034a -

9.0 - - - 0.11 10.9 0.032a -

9.5 - - - 0.099 12.5 0.027a -

10.0 - - - 0.12 11.9 0.031a

10.5 - - - 0.13 12.3 0.032a -

11.0 - - - 0.15 12.3 0.034a -

71.5 0.59 10.9 0.13c 0.17 11.3 0.047a 0.29

12.0 0.56 10.1 0.12b 0.24 9.2 0.050a 0.42

a - Error in 3vc/2xp (or 3ift/2xo) is estimated to be less than 30 percent.
b - Error in 3we/2Ap (or 3wc'/2ip) Is estimated to be less than 50 percent.

c - Error in 3vc/20p (or 3w-'/21o) is estimated to be less than 100 percent.
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TABLE A-9. 75 PERCENT ZINC CHLORIDE IN WATER

(density a = 2.06 g cm 3 )

Extinction Absorption

c rm(ljm) 3rC(mg - c' r (lim) 3rc' 2

2 1) 2p ag" e

0.55 0.91 0.40 3.8 c
1.06 0.91 0.77 2.0 c

3.0 1.01 1.4 0.77b 0.43 1.7 0.33 a 0.42

3.5 1.04 2.2 0.68c 0.086 4.2 0.056a 0.08
3.8 1.04 2.4 0.62c 0.053 5.3 0.032a 0.05

4.0 1.02 2.7 0.58c 0.030 6.3 0.017a 0.03
4.5 - - 0.035 6.8 0.018a -

5.0 - - - 0.046 7.3 0.021a -

8.0 - - - 0.066 9.6 0.019a
8.5 - - 0.087 10.8 0.023a

9.0 - - 0.10 11.8 0.026a -

9.5 - - - 0.10 13.2 0.024a -

10.0 - - - 0.12 11.4 0.028a -
10.5 - - - 0.10 13.7 0.022a -
11.0 - - - 0.083 13.6 0.027a -

11.5 - - - 0.080 16.5 0.016a -
12.0 - - 0.16 11.0 O.030a -

a - Error In 3wc/2xp (or 3wc'/2a,) Ls estimted to be leee than 30 percent.
b - Error In 3we/21p (or 3c'/1o.) s estimated to be less than 30 percent.
c - Error in 3we/21o (or 3wcI'21o) io estimeted to be les than 100 percent.
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TABLE A-t0. 100 PERCENT DIESEL FUEL OIL

(density P - 0.8419 g m- 3 )

At p given wavelength A the efficiency factor for extinction Qe (and absorp-

tion Qa) for diesel fuel oil aerosols can be approximated by a linear function

of size parameter Qe - cx (or Qa = c'x) for size parameters x < xm or equiva-

lently for particle radii r <Erm. The values of r. and c (and c') are deter-

mined from the efficiency curves (see for example figures A-6 through A-7).

If a polydispersion of oil droplets has particles with radii r < rm(X), from

the table we can find the wavelengths for which a linear relationship between

extinction (or absorption) and aerosol mass content exists, and the

appropriate value of the parameter c (or c'). The value of the quantity

31rc/2xp (or 3wc'/2Xp) multiplied by the smoke or oil mass content M gives the

extinction coefficient ae (or absorption coefficient aa). Also given in the

table is the ratio of the absorption to the extinction coefficient Ca/ae , The

single-scatter albedo wo - 1 - aa/a e .

Extinction Absorption

,(r) c rm (m) R 92-g c' rm(Pm) 3 M ', G/0-

0.55 0.84 0.4 7.9c

1.06 0.84 0.8 4.1c

3.0 0.83 2.5 
1 .5 c 0.049 6.8 0.0 9

2 a 0.06

3.5 0.92 2.3 
1 . 5 c 0.24 3.1 0.38 a 0.26

3.8 0.87 3.0 
1 . 3 c 0.086 3.8 0.13 a 0.10

4.0 0.86 3.1 
1 .2 c 0.087 5.6 0.12 a 0.10

4.5 - - 0.12 5.6 0. 1 5 a -

5.0 - - 0.15 5.2 0.16 a -

8.0 - - 0.23 6.8 0.16 a -

8.5 - - 0.24 7.4 0.16 a -

9.0 - - 0.26 6.8 0.16 a -

g -- - 0.26 8.1 0.15a "

10.0 - 0.28 8.3 0.16 a

10.5 - - 0.28 8.4 0.15a -

I11.0 - 0.27 9.1 0.14a 

11.5 - - 0.25 10., 0.12- -

12.0 - " 0.27 9.2 0.13* "

a - Zrrot Lu 3wr/21o (or 3So/2)) IS ettiftted to be 108 than 30 perent.
a - Irror In 3weI219 (or 3='/21) 14 eetMted to be less than 100 peenut.
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TABLE A-I. 100 PERCENT PALE OIL (FOG OIL)

(density P - 0.914 g cm- 3 )

At a given wavelength A the efficiency factor for extinction Qe (and

absorption Qa) for fog oil aerosols can be approximted by a linear function

of size parameter Qe = cx (or Qa = c'x) for size parameters x < xm or

equivalently for particle radii r < r.. The values of ra and c (and c') are

determined from the efficiency curves (see for example figures A-6 through

A-7). If a polydispersion of oil droplets has particles with radii r < r,(X),

from the table we can find the wavelengths for which a linear relationship

between extinction (or absorption) and aerosol mass content exists, and the

appropriate value of the parameter c (or c'). The value of the quantity

3irc/2A0 (or 3rc'/2Ap) multiplied by the smoke or oil wass content M gives the

extinction coefficient ae (or absorption coefficient aa), Alsc given in the

table Is the ratio of the absorption to the extinction coefficient a /ae . The

single-scatter albedo wo = 1 - aa/ae -

Extinction Absorption

3"nC ,g,.,. h C3c' ,2 1

X(um) c rm(Um) Y2--, c rm(Pm) pM ) oa/oe

0.55 0.84 0.43 7.9c

1.06 0.84 0.83 4 .lc

3.0 0.91 2.2 1.6 c 0.094 4.5 O.16a 0.10

3.5 0.93 2.4 
1 .4 c 0.26 3.9 0.39a 0.29

3.8 0.89 2.8 
1 .2 c 0.15 2.7 0. 2 0a 0.17

4.0 - - - 0.56 4.0 0.20, -

4.5 - - 0.16 4.6 0 .22 a
5.0 - - 0.23 4.6 0.23, -
8.0 0.85 5.7 0.55c 0.34 5.1 0.22 0.39

8.5 0.85 5.7 0 .55c 0.34 5.6 0. 2 0a 0.40

9.0 0.85 6.1 0.49c 0.35 6.0 0. 2 0a 0.41

9.5 0.84 6.5 0.4 6c 0.36 6.6 0.20a 0.43

10.0 0.85 6.3 O.4 4 c 0.40 6.1 0.20a 0.46

10.5 0.89 6.5 0.4 4 c 0.38 7.0 0.18a 0.42

11.0 0.89 6.8 0.42 c 0.37 7.4 0.17a 0.41

11.5 0.86 7.4 0.38 c 0.36 7.6 0.15a 0.42

12.0 0.84 7.4 0.36c 0.39 7.2 0.17. 0.47

a - Error in 3 /2xv (or 3wc'/2xp) is estamted to be less than 30 percent.

c - Error in 3an/2xp (or 3=n'/210) is estimated to be loss than 100 Percent,
net reconwaded for applieatie. to fog o11 smoke generated by pyrotechnic.
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TABLE A-12. 38 PERCENT SULFURIC ACID IN WATER

(density p - 1.286 g cm- 3 )

At a given wavelength A the efficiency factor for extinction Qe (and

absorption Qa ) for sulfuric acid aerosols can be approximted by a linear

function of size parameter Qe = cx (or Qa - c'x) for size parameter x < xm or

equivalently for particle radii r j rm . The values of rm and c (and c') are

determined from the efficiency curves (see for example figures 1 and 2). If a

polydispersion of sulfuric acid droplets has particles with radii r <_rm(k),

from the table we can find the wavelengths for which a linear relationship

between extinction (or absorption) and aerosol mass content exists, and the

appropriate value of the parameter c (or c). The value of the quantity

3wc/2xp (or 3vc'/2Xp) multiplied by the aerosol mass content M gives the

extinction coefficient ae (or absorption coefficient a). Also given in the

table is the ratio of the absorption to the extinction coefficient Oa/Oe . The

single-scatter albedo wo - 1 - o /a/e

Extinction Absorption

3'T t 2,,,1  .•37Tc' 2 -1

Xbm) c rm Im) F -(M ) _c rm (Im) TX(m g ) Oa/Oe

0.55 0.72 0.5 4.8 c

1.06 0.69 1.0 2.6 c

3.0 0.66 2.1 0.8la 0.43 1.3 0.52a 0.65

3.5 0.70 3.0 0.73b 0.20 3.1 O.20a 0.28

3.8 0.65 3.5 0.63c 0.16 3.0 0.16a 0.25

4.0 0.64 3.7 0.59c 0.17 3.3 0.16a 0.27

4.5 0.60 4.2 0.49c 0.19 3.2 0.16a 0.32

5.0 0.57 4.8 0. 4 2 c 0.22 3.3 0.16a 0.39

8.0 0.68 3.7 0.32a 0.58 2.3 0.27a 0.85

8.5 1.05 3.3 0.46a 0.84 2.2 0.37a 0.80

9.0 0.90 4.8 0.37a 0.65 2.8 0.27a 0.72

9.5 1.09 4.3 0.42a 0.84 2.5 0.33a 0.7?

10.0 0.96 5.5 0.35b 0.53 3.8 O.19a 0.55

10.5 0.89 5.9 0.31c 0.44 5.0 0.16a 0.49

11.0 0.84 6.4 0.28a. 0.58 4.0 0.20a 0.69

11.5 0.96 6.2 0.30b 0.58 4.4 0.18a 0.60

12.0 0.93 6.7 0.28b 0.54 4.5 0.16a 0.58

a - Izrror Lu 3=/21# (or 3$e'/2%o) I* estimtd to be les then 30 percut.
b - KNror in 3=i/2 W (ow 3W1/2AQ) i eimated to bh in t , 50 percent.
i € - Irnor im, 3weI2,. (ot 3w * )ra, esdtoA to, ft, Um 100 petcst.
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TABLE A-i 3. 75 PERCENT SULFURIC ACID IN WATER
(density p 1.669 g cm- 3 )

Extinction Absorption

X(-.m) c rm(um )  m) - c' /rm(m) mz 92§1) GaIOe

0.55 0.78 0.50 4.0 c

1.06 0.76 0.91 2.1 c

3.0 0.55 2.7 0.52a 0.25 2.1 0.23a 0.45

3.5 0.68 2.5 O.55a 0.41 1.6 0.33a 0.60

3.8 0.73 2.7 0.54a 0.36 1.8 0.27a 0.50

4.0 0.72 2.9 0.51b 0.34 2.1 0.24a 0.48

4.5 0.68 3.5 0.42b 0.33 2.2 0.21a 0.50

5.0 0.67 3.9 0.38b 0.32 2.5 0.18a 0.48

8.0 1.27 2.0 0.44a 1.21 1.4 0.43a 0.98

8.5 1.80 2.0 0.60a 1.60 1.4 0.54a 0.90

9.0 1.49 3.0 0.46a 1.18 1.9 0.37a 0.80

9.5 1.75 2.8 0.53a 1.38 1.8 0.41a 0.78

10.0 1.51 3.9 0.42b 0.82 3.2 0.23a 0.55

10.5 1.32 4.5 0.36c 0.69 3.8 0.19a 0.51

11.0 1.33 4.3 0.34a 0.87 3.2 0.23a 0.67

11.5 1.63 4.2 0.40c 0.78 3.9 0.19a 0.48

12.0 1.48 5.0 0.35c 0.57 5.1 0.14a 0.39

K

a - Error in 3= /2ko (or 3wc'/2Xp) lesestiated to be les than 30 percent.v
b - Error in 3wc22xp (or 3 cw/'24) is estlusted to be less than 50 percent.
c - Error in '$w/2%p (or 3w."/21p) ts at itted to be les than 100 percent.
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TABLE A-14

For phosphoric acid, HC, fuel oil, and FS smoke particles the backscatter gain

G at wavelength X - 0.694 = (or X = 1.06um) can be 3pproximated by linear

functions of particle size parameter G(X, x) - c"(X) x for x <x m , or equiva-

lently for r .rm. This approximation leads to the aerosol backscatter

coefficient abs being proportional to the smoke mass content M according to

equation (7). If particles in a polydispersion have radii r . rm, from the

table we can find the value of the quantity 3c"/8X0 which if multiplied by the

aerosol mass content M gives the backscatter coefficient "bs.

Smoke Material X(Um) c" r (vm) -- (m2g' sr 1)

20% H3PO4  0.694 0.078 1.3 0.038c

50% H3PO4 0.694 0.13 1.4 0.052a

65% H3PO4  0.694 0.18 1.4 0.067a

85% H3PO4  0.694 0.26 1.3 0.082a

20% ZnC1 2  0.694 0.079 1.2 0.036b

40% ZnC12  0.694 0.12 1.4 0.046a

50% ZnCl2  0.694 0.16 1.4 0.055a

65% ZnC12  0.694 0.23 1.3 0.068a

100% Fuel oil 0.694 0.20 1.3 0.12 a

38% H2SO4  0.694 0.090 1.3 0.038b

75% H2SO4  0.694 0.15 1.5 0.048a

38% H2SO4  1.06 0.082 2.0 0.023b

75% H2S04  1.06 0.14 2.7 0.030a

a - Error in 3c"/8 P Is elt4MtW to be leas then 3 Pmercnt.
b - Error in 3c"/8€ A0 eIsiuated to be less than 50 pordt.
c - Error In 3c"/8ri is eetivtbi to be lees than 100 percent.
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TABLE A-15

Radius changes (r/ro) of phosphoric acid droplets as a function of relative

humidity f. The parameter ro is the radius of a "dry" particle having density

po - 1.834 g cm-3 . (After Ignel, private communication, 1978.)

r0 (Cm): 106 3"10 -6 1O- 3-10-5 10-4 3-10-4 1O"3 3.10' 10'

f r/r o

0.2 1.075 1.078 1.078 1.078 1.078 1.078 1.073 1.078 1.078

0.4 1.213 1.236 1.236 1.236 1.236 1.236 1.236 1.236 1.236

0.6 1.327 1.346 1.352 1.353 1.354 1.354 1.354 1.354 1.354

0.7 1.396 1.425 1.436 1.440 1.441 1.441 1.441 1.441 1.441

0.8 1.489 1.535 1.555 1.561 1.563 1.564 1.564 1.564 1.564

0.9 1.652 1.752 1.795 1.810 1.816 1.817 1.817 .1.818 1.818

0.95 1.800 2.002 2.093 2.122 2.133 2.136 2.136 2.137 2.137

0.975 1.936 2.259 2.461 2.528 2.553 2.560 2.563 2.564 2.564

0.99 2.053 2.614 3.091 3.287 3.362 3.385 3.392 3.394 3.396

0.995 2.102 2.853 3.676 4.076 4.240 4.289 4.307 4.312 4.314
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TABLE A-16

Radius changes (r/ro) of HC smoke droplets as a function of relative humidity

f. The parameter ro is the radius of a "dry" particle having density P0o

2.91 g cm- 3 . (After tinel, private communication, 1978.)

r0 (Cr.): 10- 6  3-10 - 6 10 - ' 3-10 "s  10-4 3.1C "4 10-' 3-10- 10 - 2

f r/r 0

0.2 1.207 1.210 1.210 1.211 1.211 1.211 1.211 1.211 1.211

0.4 1.354 1.382 1.394 1.398 1.399 1.400 1.400 1.400 1.400

0.6 1.519 1.555 1.568 1.572 1.573 1.573 1.573 1.573 1.573

0.7 1.624 1.669 1.682 1.685 1.687 1.687 1.687 1.687 1.687

0.8 1.740 1.794 1.818 1.825 1.827 1.828 1.88 1.828 1.828

0.85 1.817 1.896 1.928 1.938 1.944 1.945 1.945 1.945 1.945

0.9 1.930 2.076 2.134 2.151 2.157 2.159 2.160 2.160 2.160

0.95 2.162 2.452 2.593 2.638 2.653 2.658 2.660 2.660 2.660

0.975 2.386 2.953 3.246 3.340 3.372 3.382 3.385 3.386 3.386

0.99 2.651 3.677 4.279 4.493 4.573 4.597 4.605 4.608 4.608

0.995 2.791 4.170 5.182 5.583 5.739 5.784 5.801 5.806 5.807
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TABLE A-17

Ratio of the extinction coefficient of phosphoric acid smoke to that for HC

smoke as a function of relative humidity calculated according to equation

(10).

X (m) Relative Humidity

40% 60% 80% 95%

0.55 1.04 1.01 1.00 0.82

1.06 1.04 1.01 1.00 0.82

3.0 0.80 0.98 0.92 0.82

10.5 2.79 1.81 1.04 0.82

11.0 2.50 1.63 1.02 0.82

12.0 2.10 1.36 1.04 0.82

I rI
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